
Opening Times: 9A.M – 10 P.M (All 7 Days Open)

HIND PHOTOSTATE & BOOK CENTER

Best Quality Hand Written Notes to Crack GATE, IES,

PSU's & other Government Competitive/ Entrance Exams

CIVIL ENGINEERING

MADE EASY

Topper Handwritten Notes

ENGINEERING MECHANICS

By-Aakash Sir

F518

F230, Lado Sarai New Delhi-110030 Phone: 9311 989 030

100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30 Phone: 8595 382 884

Shop No: 46

Near Kali Maa Mandir Lado Sarai New Delhi-110030 Phone: 9560 163 471 Shop No.7/8 Saidulajab Market Neb Sarai More, Saket, New Delhi-30 Phone: 9654 353

111

Website: www.HindPhotostate.com

Contact Us: 9311 989 030

Courier Facility All Over India

O

0

VECTOR CALCULUS

origin pt. : Pt wich is fix in space.

. Position Vector.

() Vector: only when it should follow the law of add" O

Magnitude

0 S : Displacement Vector

Change in position vector

 $\overrightarrow{y_1} = \chi_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$ $\overrightarrow{\mathcal{H}} = (4\hat{1} + 4\hat{1} + 2\hat{k})$ $94 = \sqrt{4^2 + 4^2 + 2^2}$

Fi= (8î+5ĵ+3k)

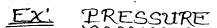
From A Law: . Fi+5 = Fi

(Tail to head) (Thead to head) add resuftant

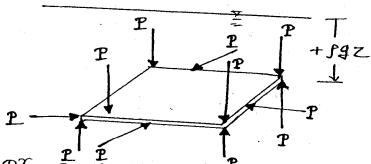
 $\overrightarrow{S} = \overrightarrow{\mathcal{H}_2} - \overrightarrow{\mathcal{H}_1} = 4\hat{i} + \hat{j} + \hat{k}$

 $\frac{dS}{dt} = \frac{dx\hat{i} + dy\hat{j} + dz\hat{k}}{dt}$

V = vî + vî + wk

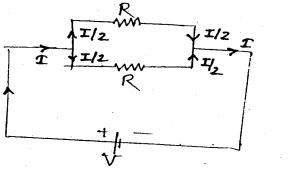

 $Z(\hat{k})$

('


Vector is the physical quantity with is having with Magnitude as well as dir & it should obeys sie law of vector addition.

Note: Some physical quantity have both magnitude as well as dign but they i not obeying Ne law of Vector addition (Fenessiere, Crownent)

Representation TAIL (34) Vector


→ Scalar Quantity
→ External

Proof follow se law so it is not cancel each other components, so on the swiface always acts pr (P).

* STRESS -> Tenson Quality
-> Internal

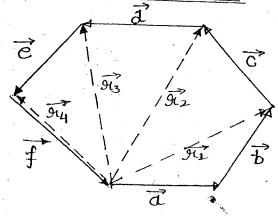
CURRENT

Crowerst also not a O Vector quantity. I/2 & I/2 not cancel O each other & they O make by add croven (10

0

O

O


C

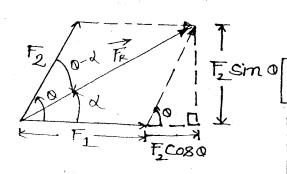
0

U

LAWS OF VECTOR

1) POLYGON LAW

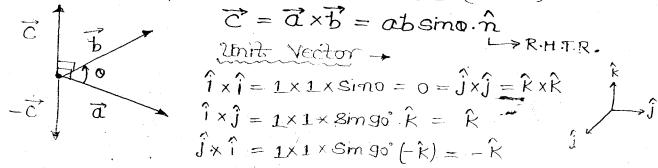
$$\overrightarrow{\mathcal{H}_1} = \overrightarrow{\mathcal{O}_1} + \overrightarrow{\mathcal{O}_1}$$

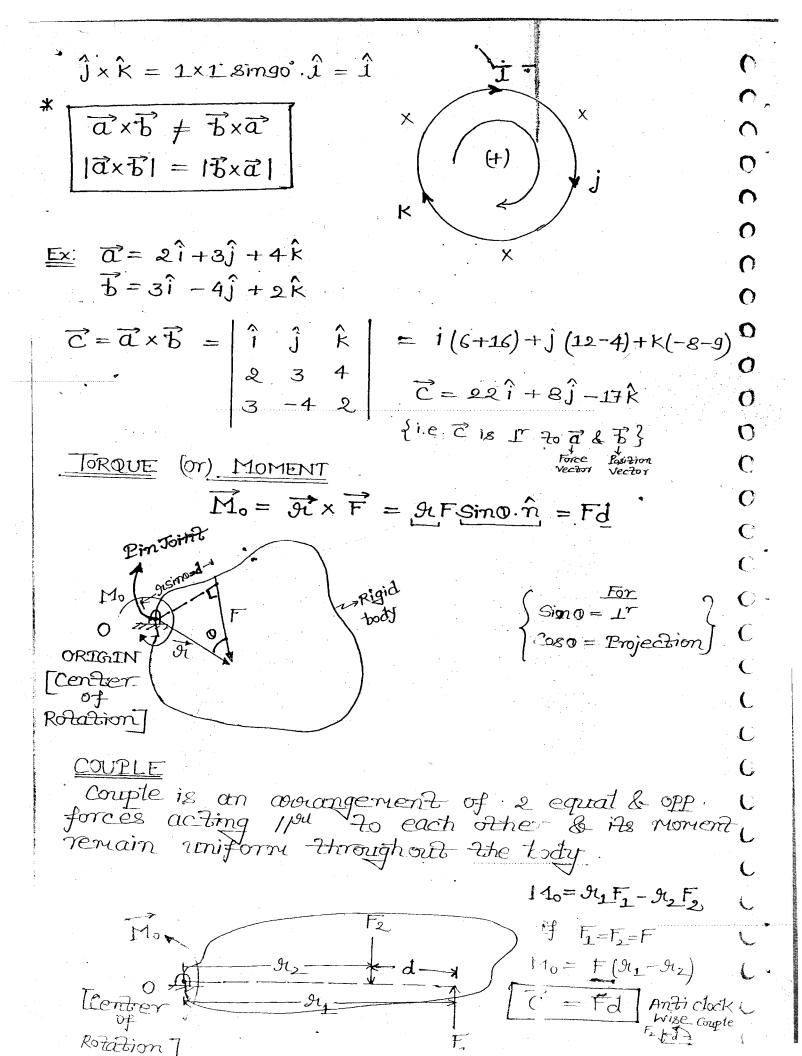

$$\vec{\mathcal{H}}_2 = \vec{\mathcal{H}}_1 + \vec{\mathcal{C}} = (\vec{\mathcal{C}} + \vec{\mathcal{b}}) + \vec{\mathcal{C}}$$

$$\vec{\mathcal{H}} = \vec{a} + \vec{b} + \vec{c} + \vec{d}$$

$$0 = \vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{e} + \vec{f} - (e)$$

"Negative Vector"


2) PARALLOGRAM LAW



$$F_R = \sqrt{(F_1 + F_2 \cos^2 + (F_2 \cos 0)^2)}$$

O C 5 2006 when a forces Fi & Fo mitually at right angle Then their resultants is 10 KM. When they rinching 07 60°, The " " 5/6 KN . Then determine the magnitude of the indivisual forces! A) 4KN, GKN B) 6KN, 8KN VE) 50 KN J50 KN D) J25 KN, J75 KN 0 501 0 = 900, FR = 10KM 0=60°, FR = 5/6 KN_ O \mathbf{O} (5/6)2= F12+F2+(1)F1F2×X $(10)^{2} = F_{1}^{2} + F_{2}^{2}$ O $F_1^2 + F_2^2 = 100 - (1)$ 150 = 100 + = F.F. D $F_1^2 + \left(\frac{50}{F_1}\right)^2 = 100$ $F_1F_2 = 10050 - (2)$ 0 $F_2 = SO$ $F_1^4 + 2500 = 100 F_1^2$ 0 \mathbf{C} Slet Fi=x} $F_1^4 - 10F_1^2 + 2500 = 0$ $F_1^2 = 100 + \sqrt{(100)^2 + 4(2500)} + (0R) + (X - 50)^2 = 0$ 0 $F_1^2 = \frac{100}{2} = 50$ $F_2 = \frac{50}{150} = \sqrt{50} \text{ KN As}$ - F_ = 150 Ans. CROSS PRODUCT

The dirm of the cross product is always I' to the plane with conitains vector a & b & its dirm is given by Right Hand Thurb Rule (RHTR)".

